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Abstract

Based on an international workshop (Gothenburg, 14–16 May 2008), this review article
aims to combine interdisciplinary knowledge from coastal and open ocean research on
iron biogeochemistry. The major scientific findings of the past decade are structured
into sections on natural and artificial iron fertilization, iron inputs into coastal and es-5

tuarine systems, colloidal iron and organic matter, and biological processes. Potential
effects of global climate change, particularly ocean acidification, on iron biogeochem-
istry are discussed. The findings are synthesized into recommendations for future
research areas.

Preface10

An international workshop addressing the biogeochemistry of iron in the context of
global change across marine ecosystems was held in Gothenburg, Sweden (14–16
May 2008). Largely driven by geographic separation, iron biogeochemistry in the open
ocean and in coastal seas are often addressed as two distinct fields and the work-
shops organized over the past two decades have normally either been system- or task-15

specific. This has led to the development of system-specific expertise and research
approaches, with potential separation of know-how. The aim of this workshop was to
conduct a broader cross-system review of marine iron biogeochemistry by bringing to-
gether scientists from a wide range of coastal, shelf and deep-ocean environments to
merge their system-specific knowledge into a truly cross-disciplinary and cross-system20

synthesis. This lead article is an attempt to summarize the scientific milestones of the
past 10 years discussed during the workshop.

The Gothenburg workshop was convened almost ten years after a workshop meet-
ing in Amsterdam, sponsored by SCOR and IUPAC. The Amsterdam workshop was
devoted to reviewing draft chapters for the book “The Biogeochemistry of Iron in Sea-25

water” (Turner and Hunter, 2001). The Gothenburg workshop revisited the topics listed
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in the “Summary and Recommendations” of this book which identified a number of fu-
ture research priorities, reviewed the recent scientific progress and identified new future
priorities. The priority areas identified in Amsterdam were the following: i) The Global
Iron Budget; ii) The Intercomparability of Fe Measurements in Seawater; iii) The Na-
ture and Function of Fe(III)-binding organic ligands; iv) The Nature of the Fe(III) Solid5

Phase(s) in Seawater; v) What Constitutes “Biological Availability” of Fe?; vi) The Na-
ture of the Ecological Response to Fe Additions; Co-limitation by Fe, Light, Nutrients
and other Metals. The Gothenburg workshop took up two further aspects that cut
across the above areas: A) What can we learn from comparing Fe biogeochemistry in
coastal and open ocean systems? And B), how are global change processes expected10

to affect Fe biogeochemistry?
This article aims to synthesize the cross-system and interdisciplinary knowledge

from atmospheric, chemical, biological, and geological angles discussed during the
Gothenburg workshop and ties the manuscripts of this special issue into this overall
context. Due to this wide range of topics, it is not intended to be a comprehensive, in-15

depth review on all aspects of marine iron biogeochemistry. We follow the structure of
the workshop topics, which were 1. Natural iron fertilization; 2. Artificial Fe fertilization
3. Fe inputs into coastal and estuarine systems; 4. Colloidal iron and organic matter;
5. Linking biological processes to iron chemistry; and 6. Iron and Climate Change.
Each section concludes with recommendations for future research.20

1 Natural iron fertilization

The past decade brought major advances in the understanding of natural iron fertil-
ization processes to the open ocean. The field is generally subdivided into two major
areas: atmospheric deposition with the main focus on dust deposition from the con-
tinents and more recently addressing volcanic ash and pumice depositions; and ma-25

rine processes, where particular areas of interest have been ice melting, hydrothermal
vents, continental margins, and the island mass effects.
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1.1 Atmospheric deposition – dust

Over the last 10 years, the importance of dust transport and deposition within the Earth
System has become clear (Jickells et al., 2005). This includes the role of dust in trans-
porting iron to the oceans, but also the transport of nutrients to land and impacts on
albedo. Dust supply is episodic and predominantly from desert regions, and satel-5

lite advances have allowed these sources to be better characterized (Prospero et al.,
2002). These satellite advances also allow some improvement in understanding of
dust transport and deposition, but this is still limited to high dust regions where the
total aerosol is dominated by dust (Mahowald et al., 2005). In regions remote from the
desert sources, aerosols may be dominated by sea and acid salts. Furthermore close10

to a source region, particularly over the ocean off North Africa, the dust is transported
at altitude, so the satellite detection of a dust plume, does not necessarily imply de-
position to the oceans at that location (Mahowald et al., 2005). Since dust transport
is episodic, field data to validate models and provide direct estimates of dust loading
should ideally cover periods of months to years. Obviously though, shorter campaign15

style measurements can be useful for studying processes, and if repeated can provide
long term average concentrations. The number of long-term dust monitoring stations is
still very limited and broadly the same as identified in Jickells and Spokes (2001). This
data set is dominated by the Prospero network (e.g. Ginoux et al., 2004), and the lack
of data in the low dust regions, where ocean euphotic zone iron limitation is evident, is20

notable. Recent campaigns in some of these regions (Baker et al., 2006; Planquette
et al., 2007; Wagener et al., 2008) do provide some confidence in the models, but the
uncertainties are substantial. The work of Measures and colleagues (e.g. Han et al.,
2008) has demonstrated the validity of a novel indirect approach of using surface wa-
ter Al as a tracer of atmospheric deposition which provides data averaged over long25

time scales (months to years) in remote regions. Again this approach has significant
uncertainties, but the broad agreement between this, long term field data, campaign
data and models provides reassurance that the estimates of total dust deposition to the
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oceans and the regional patterns are realistic.
A major continuing source of uncertainty in estimating dust deposition to the oceans

is associated with the parameterisation of wet and dry deposition, except in the few
cases where wet deposition has been measured directly. The congruence of data and
models noted above does provide some confidence that, at the global scale, the av-5

erage deposition parameterization is approximately correct. This does not mean that
the resultant dust flux from these averages is estimated correctly at the regional scale,
or in the low dust regions of water column iron limitation. Duce et al. (1991) estimated
uncertainties of a factor of three in the deposition velocity and this uncertainty largely
remains. Jickells et al. (1998) demonstrated that the use of ocean sediment trap data10

can provide a valuable constraint on the uncertainties in deposition velocities and Ma-
howald et al. (2005) considered this further. However, the use of this technique in low
dust regions does require high quality measurements of a dust tracer such as Al in
the sediment traps and this is not always available. If this became routine it would
offer a mechanism to significantly reduce uncertainties in deposition parameterization.15

Such an improvement would allow dust and iron mass balance in individual regions
and comparison to productivity estimates.

The conversion of dust deposition to soluble iron fluxes requires the solubility of iron
from dust to be known. This is required ideally over the timescale of the residence times
of dust in the water column (tens of days, see Jickells et al., 2005) and at realistically20

low dust loadings, although this is very difficult in practice and more pragmatic short
term simple aerosol leaching schemes are usually applied (Baker and Croot, 2009).

Considerable effort has been put into studies of aerosol dust solubility over the last 10
years and this has tended to confirm that on a global average Fe solubility is low (Jick-
ells et al., 2005; Mahowald et al., 2005), but also demonstrated that the use of a single25

solubility estimate is probably inappropriate and there does appear to be a system-
atic increase in solubility from high to low dust regions (Baker and Croot, 2009; Baker
and Jickells, 2006). There is still considerable debate surrounding the drivers of this
variation in solubility with four main possibilities;
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– atmospheric chemical processing during dust transport (Fan et al., 2006; Jickells
and Spokes, 2001),

– systematic changes in aerosol particle size leading to changes in surface area
and solubility (Baker and Jickells, 2006),

– an additional source of iron beside crustal dust (Jickells et al., 2005; Schroth et al.,5

2009).

– Active biological acquisition and uptake mechanisms such as siderophores and
grazing that can circumvent abiotic dissolution limitations (Barbeau and Moffett,
2000; Yoshida et al., 2002; Frew et al., 2006).

There is good evidence that solubility of iron from anthropogenic aerosol is higher10

than from soil dust (Schroth et al., 2009; Journet et al., 2008) but the significance
of this high solubility anthropogenic dust to the global iron cycle is uncertain, and in
particular it seems unlikely to be responsible for high iron solubilities in aerosols in
remote regions seen for instance by Baker and Jickells (Baker and Jickells, 2006).
However, recent measurements of iron speciation from African dust collected in the15

Trade Winds at Barbados support the case for anthropogenic iron controls over iron
solubility. Trapp et al. (2009) show that Fe3+dominates the iron solubility over the entire
range of particle sizes. However, at low mineral dust concentrations Fe2+, believed
to be largely derived from anthropogenic sources, becomes increasingly important.
Air-mass back trajectories indicate biomass burning in southern Africa and potentially20

also South America as the source of this anthropogenic iron and dust samples had an
Fe+2/Fe+3 ratio twice that measured in dust-laden aerosols from North Africa (Trapp
et al., 2009).

Further, Ye et al. (2009) aim to improve the understanding of the impact of dust
deposition on Fe bioavailability and marine primary productivity in modeling iron spe-25

ciation and biogeochemistry at TENATSO (Tropical Eastern North Atlantic Time-series
Observatory). Based on recent studies on Fe speciation and the existing model for the
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Bermuda Atlantic Time-series Study (BATS) (Weber et al., 2007), this model aims at
studying the role of dust particles in Fe removal and providing a better description of
the sources and fate of organic Fe-binding ligands.

Dry deposition probably dominates dust and iron deposition over some regions of
the ocean, particularly those where winds flow off the land including areas downwind of5

major deserts such as the Sahara. Wet deposition is probably particularly important for
total deposition in remote regions of the ocean. The data set for dust and soluble iron in
wet deposition in the marine atmosphere is very small, and this requires improvement.

To date, this discussion has largely considered only dust and iron deposition. How-
ever, atmospheric deposition delivers significant amounts of iron (Jickells et al., 2005)10

and nitrogen (Duce et al., 2008) and relatively small amounts of phosphorus (Mahowald
et al., 2008) relative to phytoplankton requirements. Assorted trace metals that may
play a role in phytoplankton productivity, including some that are potentially inhibitory,
will also be deposited (e.g. Paytan et al., 2009). It is important that we evaluate the
impacts of atmospheric deposition holistically, and not artificially separate the contribu-15

tions of individual nutrients.

1.2 Other atmospheric and marine processes of natural Fe fertilization

All short-term artificial Fe fertilization experiments unequivocally showed the impor-
tance of Fe on the carbon cycle, in particular on the food web structure and functioning
(e.g. Boyd, 2004; Boyd et al., 2007, 2000; Coale et al., 1996, 2004; Gervais et al.,20

2002; Tsuda et al., 2003; de Baar et al., 2005, see Sect. 2). However, it is difficult to
reliably assess the magnitude of carbon export to the ocean interior using such meth-
ods (Blain et al., 2007). Recent natural Fe fertilization experiments carried out in the
Southern Ocean showed that the efficiency of fertilization was at least 10 to 20 times
greater than that of a phytoplankton bloom induced artificially by adding iron, (KEOPS25

and CROZEX, Blain et al., 2007; Pollard et al., 2009). Large losses of purposefully
added iron can explain the lower efficiency of the induced bloom, as well as the mode
of iron addition and the requirement of concomitant supply with major nutrients (Pol-
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lard et al., 2009; Blain et al., 2007). In the open ocean, a large variety of naturally
iron-fertilized sites exist, which could allow for improved forecasting of the oceanic re-
sponse to Fe fertilization and a better knowledge of Fe sources to the open ocean.
Chever et al. (2009) provide a Fe budget for the naturally fertilized area above the Ker-
guelen Plateau, using total dissolvable Fe as an additional tracer to better constrain the5

Fe cycle in this area. They show that horizontal advection of water from South of the
Plateau seems to be the predominant source of apparent particulate and dissolved iron
above the plateau, over atmospheric and vertical inputs. Further, Ardelan et al. (2009)
illustrate natural Fe enrichment processes from the South Shetland Islands-Antarctic
Peninsula region.10

As discussed in Sect. 1.1, aeolian inputs may have different origins, such as (i) the
arid and semi-arid regions (Jickells et al., 2005), (ii) combustion sources (fossil fuel
burning, incinerator use, biomass burning; (Spokes and Jickells, 2002; Guieu et al.,
2005; Sedwick et al., 2007; Luo et al., 2008), but also by (iii) meteoritic material and
extraterrestrial dust (Johnson, 2001), and (iv) volcanic origin (Benitez-Nelson et al.,15

2003; Duggen et al., 2007; Boyd et al., 1998). All atmospheric input may have an
effect on biological productivity in the ocean (Schroth et al., 2009), in particular on
bacterial activity (Pulido-Villena et al., 2008), although the causative link is not always
obvious as shown by (Boyd et al., 2009).

While the meteoritic contribution is difficult to assess due to the sporadic events, the20

amount of soluble (presumably bioavailable) iron input into the ocean from extraterres-
trial dust is estimated to be 7×109 g year−1 (Johnson, 2001) and is thus not insignifi-
cant. More so, volcanic eruptions can transport volcanic ash up to several tens of kilo-
metres high into the atmosphere and fine ash may encircle the globe for years, thereby
reaching even the remotest and most iron-starved oceanic areas (Schmincke, 2004).25

The implication of volcanism for the marine biogeochemical iron-cycle is poorly con-
strained so far. Recent studies demonstrate that volcanic ash from volcanoes world-
wide quickly releases soluble and bio-available iron on contact with water (e.g. Jones
and Gislason, 2008; Duggen et al., 2007; Frogner et al., 2001). Drill core data from
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scientific ocean drilling show that volcanic ash layers and dispersed ash particles are
frequently found in marine sediments and that volcanic ash deposition and therefore
iron-injection into the oceans took place throughout much of the Earth’s history (Straub
and Schmincke, 1998). It may thus well be possible that the contribution of volcanic ash
to the marine biogeochemical iron-cycle is generally underestimated. A review paper5

(Duggen et al., 2009) summarises the development and the knowledge in a fairly young
research field covering a wide range of chemical and biological issues and gives rec-
ommendations for future directions. The approach by Duggen et al. (2009) contributes
to understanding of the role of volcanic ash for the marine biogeochemical iron-cycle,
marine primary productivity and the ocean-atmosphere exchange of CO2 and other10

gases relevant for climate throughout the Earths’ history.
Melting of sea ice, icebergs and glacial inputs may contribute as Fe sources in polar

regions. Estimates of these sources’ magnitudes are poorly constraint. Recent stud-
ies have highlighted the importance of these sources (Lannuzel et al., 2008; Lannuzel
et al., 2007; Statham et al., 2008; Aguilar-Islas et al., 2008; Raiswell et al., 2008, 2006;15

Smith et al., 2007; Croot et al., 2004). Iron accumulates in sea ice with concentrations
one to two orders of magnitude higher than the underlying seawater. Atmospheric iron
can be one source but flux estimates by Lannuzel et al. (2008, 2007) seem to indicate
that iron must come mostly from below. The exact mechanism remains unclear, but
recent evidence suggests that organic matter could play an essential role in trapping20

Fe in the sea ice not only during sea ice formation but also during ice algae proliferation
in the bottom ice after its formation (Schoemann et al., 2008). Its release into the sea-
water during ice melting can occur in short time spans such as weeks. For example,
Lannuzel et al. (2008) showed that 70% of the accumulated Fe in the sea ice could be
released due to brine drainage in a 10 days period, while the sea ice cover was still25

present. This represents a significant Fe flux to the surface ocean that may be instru-
mental in sustaining springtime ice edge blooms in the marginal ice zone and polynias.
Dense phytoplankton blooms have been observed in combination with the receding
ice edge or in coastal shelf areas (e.g. Smith and Nelson, 1985; Holm-Hansen et al.,
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1989). Moreover, both sea ice and icebergs may constitute vectors of Fe transport far
away from its initial source (Smith et al., 2007; Lancelot et al., 2009). Further to this,
Edwards and Sedwick (2001) addressed the contribution of snow bound aerosol iron
in the Antarctic seasonal sea ice zone.

The continental margins may also play a key role as a Fe source (Elrod et al., 2004;5

Laës et al., 2003, 2007; Chase et al., 2005; Blain et al., 2008). As an example, Lam
and Bishop (2008) clearly showed that the continental margin was a key source of Fe
to the HNLC North Pacific Ocean, since the lateral source of Fe is shallow enough to
be accessible to phytoplankton by winter mixing and Fe can be transported at distance
over 900 km from the continental shelf.10

Our current challenge in regions where natural iron fertilization occurs is to have
a better knowledge and quantification of these various Fe sources. For example, the
global atmospheric iron fluxes are reasonably well known, but the fluxes to remote low
iron regions are rather uncertain. Moreover, the aerosol iron solubility varies system-
atically, but the underlying causes of this are uncertain. In the deep waters, Fe can15

be transported far away from the source, especially in waters with anoxic conditions
(Blain et al., 2008). Local and remote sources of Fe may not have the same impact
on carbon cycle. We also need to understand how i) the different sources of Fe in-
fluence its speciation and bioavailability; ii) they contribute to the global Fe budget;
iii) they will be affected by global change, and iv) what are the physical mechanisms20

that allow long distance Fe transport: advection (strong currents, ACC, EUC, de Baar
et al., 1995; Mackey et al., 2002; Lam and Bishop, 2008; Loscher et al., 1997), internal
waves and slope circulation (Laës et al., 2003), and eddies (Johnson et al., 2005). Fi-
nally, the physical mechanisms that allow Fe to be accessible for the food web should
also be better understood and quantified (upwelling, diapycnal mixing, winter mixing,25

Blain et al., 2007).
To asses these challenging issues, there is a crucial need for i) multi-disciplinary

studies (physics/biogeochemistry/biology), ii) multi-proxy approaches, such as the one
promoted by the international GEOTRACES program, including oceanic sections and
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intercalibration experiments for seawater and aerosols; iii) the development of biogeo-
chemical models that correctly take into account the various Fe sources and their
impact on Fe speciation and bioavailability, and iv) the development of regional iron
budgets.

2 Artificial iron fertilization5

In ca. 40% of the worlds’ oceans the chlorophyll-a concentrations are very low while
elevated nitrate and phosphate concentrations persist in surface waters (Moore et al.,
2002; Falkowski et al., 1998). These parts of the ocean have been termed high nutrient
low chlorophyll (HNLC) regions, and include the Subarctic and Equatorial Pacific and
Southern Ocean (Watson, 2001). It has been hypothesized that primary productivity in10

the HNLC regions is limited by an insufficient supply of iron. Gran (1931) was the first to
postulate the key role of iron for these regions. However, it was not until the late 1980s
that the sampling and analysis approaches for dissolved iron had sufficiently improved
to allow detailed studies of iron distributions and limitation in the HNLC regions (e.g.
Martin and Fitzwater, 1988; Martin et al., 1989).15

Ship-board iron-addition bottle experiments in HNLC regions clearly showed that
these additions stimulated phytoplankton growth in surface waters of the HNLC regions
(e.g. de Baar et al., 1990). However, the potential for bottle-effects during these ex-
periments led researchers to plan and undertake mesoscale Lagrangian-type oceanic
experiments to study the influence of iron additions on primary productivity, and investi-20

gate the consequences for nutrient utilization, ecosystem dynamics and carbon export.
More than a dozen of these large scale (typically 10×10 km grid) iron addition exper-
iments have been conducted to date in HNLC regions and were reviewed by de Baar
et al. (2005) and Boyd et al. (2007). The latest experiment (Lohafex January–March,
2009; Editorial Nature Geoscience, 2009) involved conducting iron, carbon, nutrient,25

climatically active gasses, and ecosystem observations in the Southern Ocean in a sta-
ble mesoscale eddy for >7 weeks following an enlarged scale (300 km2) iron addition
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with 20 tons of iron sulphate. The longer time scale allowed a thorough examination of
biogeochemical and ecosystem changes and carbon export.

The artificial iron experiments have confirmed the key role of Fe supply for photo-
synthesis and other physiological processes, diatom productivity and sinking and iron
uptake rates in tropical as well as in polar HNLC waters (Boyd et al., 2007; de Baar5

et al., 2005). Iron limitation also induces a decoupling in the use of macronutrients by
phytoplankton, likely to influence the cycling of the major biogeochemical cycles (C,
N, P, Si, S) over geological time scales (de Baar and La Roche, 2002). In addition to
iron, light has been shown to play an important role in the regulation of phytoplankton
production in HNLC regions (Moore et al., 2007a, 2007b; Maldonado et al., 1999; Boyd10

et al., 2001; Hoffmann et al., 2008; de Baar et al., 2005; Bucciarelli et al., 2009). Over
all, our knowledge about iron solubility, organic iron complexation, and the importance
of iron redox states has greatly advanced (e.g. Rue and Bruland, 1995; Croot et al.,
2001).

The largest source of iron for the HNLC surface waters comes from deep water sup-15

ply (Watson, 2001). However, the Fe:N or Fe:P ratio of the upwelled deep waters is
often not high enough for optimum phytoplankton growth (Moore et al., 2006). Conse-
quently, an additional source of iron is required, which could be derived from suboxic
or anoxic sediments (Laës et al., 2007) or dust inputs (Jickells et al., 2005). Fertiliza-
tion of the Southern Ocean with dust has been suggested as an explanation for past20

glacial periods (Martin, 1990). During these periods iron dust inputs to the oceans
were strongly enhanced, with the Southern Ocean receiving up to 10 times more dust-
derived iron (Wolff et al., 2006), with a consequent stimulation of phytoplankton growth
and the biological carbon pump. The Southern Ocean is the HNLC region where iron
stimulation of CO2 sequestration would be most efficient and yield long-term carbon25

storage in deeper waters (Sarmiento and Orr, 1991). Nevertheless, it has been esti-
mated that the increase in iron stimulated productivity could have contributed perhaps
15–25% of the 80–100 ppm drawdown in atmospheric CO2 observed during glacial
maxima by enhancing the biological carbon pump (Sigman and Boyle, 2000; Bopp
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et al., 2003).
Large scale iron oceanic addition has been suggested as an option for mitigating

the present day increasing atmospheric CO2 concentrations (Kintisch, 2007). Cur-
rently there are a number of uncertainties surrounding intentional, large-scale, ocean
iron fertilization, which will require further research for clarification. The mineraliza-5

tion of the enhanced sinking phytoplankton biomass could result in local anoxia and
consequent negative effects to oceanic ecosystems and the production of the harmful
greenhouse gases nitrous oxide and methane (Cullen and Boyd, 2008; Furman and
Capone, 1991). Other climate active gases, like dimethylsufide (DMS) might increase
following Fe fertilisation (Liss et al., 2005). Direct ecosystem shifts resulting in for ex-10

ample proliferation of jellyfish have also been suggested. Furthermore, purposeful iron
fertilization may result in a reduced nutrient inventory and consequently reduced pro-
ductivity and potentially fisheries in oceanic systems downstream of the fertilization
areas (Gnanadesikan et al., 2003).

A further key unknown is the efficiency of carbon removal. The amount of carbon15

sequestered per unit addition of iron is crucial to the effectiveness of iron fertilization (de
Baar et al., 2008). The artificial experiments have indicated an efficiency of biological
carbon export into deeper water (100–250 m) ranging from 650 (SERIES, Boyd et al.,
2004) to 3300 (mol C/mol Fe) (SOFEX – south, Buesseler et al., 2004). The seasonal
sequestration efficiencies estimated for natural Fe fertilization are much higher, 864020

for CROZEX (Pollard et al., 2009) and 154,000 for KEOPS (Chever et al., 2009). The
discrepancies in effectiveness between natural and purposeful fertilizations might be
partly due to the ∼75% immediate loss of added Fe in artificial fertilisations (de Baar
et al., 2008). These values will need to be much more tightly constrained to allow
a thorough assessment of the potential success of iron fertilization as a means to25

reduce the increasing atmospheric CO2 concentrations and cost (Boyd, 2008). The
success of the large scale oceanic additions of iron has furthermore been put into doubt
by modeling studies. Recent work by Dutkiewicz et al. (2005) and Aumont and Bopp
(2006) suggests that large scale iron additions would only reduce atmospheric CO2
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concentrations by ca. 10 ppm, as other limiting factors such as light and zooplankton
grazing become more important. It appears that large uncertainties remain with respect
to the efficiency of iron fertilization that require further investigations using observation
and models. For a recent in depth assessment of the topic see Boyd et al. (2007), as
well as Boyd (2008) and associated publications. From a marine trace-metal research5

perspective, the attendants of the workshop came to the conclusion, that priority should
be given to small scale open ocean Fe biogeochemistry studies that are specifically
designed to address clearly defined research questions of trace-metal chemistry.

3 Fe inputs into coastal and estuarine systems

The coastal area is a key environment in the global iron cycle, where the brackish10

water environment changes the physicochemical speciation, and thus mobility, of river-
introduced iron via aggregation, sedimentation and redox processes. The coastal wa-
ters also are a highly dynamic transition zone, resulting in very diverse temporal and
spatial chemical and biological changes. Relatively little work has been done on tem-
poral changes in the physicochemical speciation of iron in the photic zone in estuaries.15

The worlds largest estuary, the Baltic Sea, serves as an excellent large scale lab-
oratory to study trace metal chemistry over a wide salinity gradient. Here the total
iron concentration decreases by more than an order of magnitude from the low salinity
north-east (Bothnian Bay), via the Bothnian Sea to its central part (Baltic Proper), thus
forming a natural well defined iron concentration gradient for studying physicochemical20

speciation of iron and the role of iron for primary production at different total (unfiltered)
iron concentrations (Gelting et al., 2009). The authors observed significant variations
in the physicochemical speciation, including the iron isotopes, at high temporal resolu-
tion from the euphotic zone. Other large river systems such as the Columbia River and
Mississippi also show large gradients in iron concentrations but also act as significant25

sources of Fe to coastal regions (Powell and Wilson-Finelli, 2003; Lohan and Bruland,
2006).
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Total concentrations of iron in coastal waters though are generally several orders of
magnitude higher than open ocean values and at a first glance, iron limitation of primary
production in coastal areas seems not very likely. However, temporal growth limitation
by iron can occur in some coastal upwelling regions (Bruland et al., 2001; Hutchins
and Bruland, 1998) and fjord systems (Öztürk et al., 2002). Data presented in this vol-5

ume however suggest that iron is not a limiting element for cyanobacteria in the Baltic
Sea. In addition to photochemical processes and organic complexation it is the cycling
of iron between particles, colloids and the truly dissolved fraction (<1 kD), rather than
the total concentration determines the bioavailability of iron in coastal surface water.
The truly dissolved fraction can rapidly be consumed during bloom conditions if this10

fraction is small and exchange processes between particulate-colloidal matter and the
truly dissolved fraction are slow. Hence, knowledge about distribution and cycling of
iron between these phases in the coastal zone is fundamental for predictions about iron
limitation for plankton growth, and is key to understanding iron export pathways to the
open ocean. For the Baltic Sea, Gelting et al. (2009) show that iron in the <1 kDa frac-15

tion never reached critical low levels during summer phytoplankton bloom conditions.
Further, Fe(II) is generally not considered as an abundant source of bioavailable iron
due to its short residence time in oxygenated water. However, a relatively high stand-
ing concentration of Fe(II), large enough to cover the demand for iron by cyanobacteria
in Baltic Sea waters, was observed by Breitbarth et al. (2009) in a study paralleling20

Gelting et al. (2009).
Measurements of the physicochemical speciation of iron in freshwater during the

last five years suggest that iron transport in rivers is associated with two types of car-
rier phases (besides detrital particles), an oxyhydroxide phase with associated CDOM
(chromophoric dissolved organic matter, mostly consisting of humic acids) and an or-25

ganic carbon (fulvic) phase (e.g. Lyvén et al., 2003; Andersson et al., 2006). Much of
this fulvic phase is present as small colloids and in the truly dissolved fraction (<1 kD).
When these phases reach the saline coastal water substantial aggregation of the Fe-
oxyhydroxide fraction with associated CDOM is observed, whereas iron associated to
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the fulvic fraction show little aggregation (Stolpe and Hassellöv, 2007) and survives the
sequential sequestration from the water column during gradual mixing with seawater
(Krachler et al., 2005). It is possible that this land-derived fraction can reach the open
ocean, as indicated by recent data (Laglera and van den Berg, 2009). With fulvic acid
as one important carrier mechanism for riverine Fe, the influence of this Fe source5

reaches further out to sea than previously expected. Tovar-Sanchez et al. (2006) for
example, suggested based on metal composition, that riverine and not dust born mate-
rial was the main source of trace metal accumulation in diazotroph (Trichodesmium sp.)
dwelling the surface waters of the subtropical and tropical North Atlantic Ocean. Back
at the river – seawater interface, Gerringa et al. (2007) argue that particularly the weak10

iron ligand groups (L2) may impede the precipitation of Fe in the Scheldt Estuary upon
mixing with seawater and that the strong ligand (L1) generally observed in the open
ocean, albeit also present, were insufficient in concentration. Powell and Wilson-Finelli
(2003) though point out that the latter is of crucial importance for Fe transport in the
Mississippi river plume. Likewise, Buck et al., (2007) demonstrated the predominant15

importance L1 type ligands for Fe transport into the sea from the Columbia River and
San Francisco Bay plumes. The stability constants of these strong L1 ligands are very
similar to those reported by Laglera and van den Berg (2009) for Fe bound to fulvic
acids, indicating the importance of these ligands in controlling the solubility of dissolved
iron in riverine and coastal systems. Clearly, Fe speciation in estuarine and near-shore20

waters can not be addressed in a generalized manner and systems may differ depend-
ing on watershed characteristics (e.g., pristine versus anthropogenically impacted) as
well as the level and type of riverine input (Öztürk and Bizsel, 2003; Krachler et al.,
2005) (see 4 for colloidal matter).

Ingri et al. (2006) suggest that iron isotopes could be used to roughly identify the25

two major suspended fractions for iron in river water, the oxyhydroxides phase, which
shows positive δ56 values, and the fulvic fraction that has a more negative signal. River
water-seawater mixing experiments by Bergquist and Boyle (2006) showed that aggre-
gated Fe was enriched in heavy isotopes. Hence, aggregation and sedimentation of
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the oxyhydroxide fraction during estuarine mixing should remove heavy isotopes from
surface suspended matter, resulting in a more negative signal in the suspended phase,
as indicated by field data from the River Lena freshwater plume (J. Ingri, personal com-
munication). Cycling of iron in coastal areas appears to result in export of a negative
iron isotope signal in the truly dissolved fraction, suggesting that open ocean water5

generally has a negative dissolved isotope iron signal thus explaining the negative δ56

value in ferromanganese crusts in the deep-sea. However, recent data indicate that
bottom water in the open ocean has a positive δ56 value (Lacan et al., 2008), although
it should be noted that the dataset is limited to one depth profile.

Iron isotope data from surface water in the Baltic Sea reveal systematic temporal10

variations in the Fe-isotope signal. For example, the δ56 value changed from −0.1 to
+0.25‰ during a diatom spring-bloom resulting in subsequent sedimentation of iron
with a negative isotope signal (Gelting et al., 2009). During the summer a relatively
stable positive δ56 value was measured in suspended matter at different locations.
This was likely due to a combination of river introduced aggregated oxyhydroxides and15

particulate iron formed from oxidation of dissolved Fe(II) in surface water. In this low
salinity system, river introduced Fe-oxyhydroxides aggregate, but may not sediment in
the river estuaries due to the lack of detrital sinking and flocculation processes and
hence can spread far into the Baltic Sea (Gustafsson et al., 2000). This system is in
sharp contrast to recently revised very rapid aggregation and sedimentation processes20

for direct river – seawater mixing (Nowostawska et al., 2008).
Recent advances suggest that iron isotope measurements have a large potential

to provide new information on iron cycling and iron transport from coastal areas to
the open ocean (de Jong et al., 2007). Fe/Ti or Fe/Al ratios close to average crust
material do not necessarily indicate that the suspended phase mainly reflects detrital25

particles. Both positive and negative iron isotope values have been measured although
the sample has a Fe/Ti or Fe/Al ratio close to average crust material. Furthermore,
a δ56 value around zero does not necessarily mean that the sample consists of mainly
detrital rock fragments, as it usually is a mixture of iron particles with positive and
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negative δ56 values (Gelting et al., 2009). Recommendations for future work thus
consist of a focus on this field including continuing the characterization of the carrier
phase for Fe across the salinity gradient and into the open ocean.

4 Colloidal iron and organic matter

Ten years ago the focus of Fe biogeochemistry was on dissolved (filterable) iron spe-5

ciation and quite specific iron complexes. Once overlooked and neglected (Wells,
1998), progress has been made in understanding the nature and importance of or-
ganic colloidal material in seawater and coastal systems and challenged the simple
discrimination into particulate and dissolved iron (0.45 or 0.2 µm filtered). Further-
more, dynamic exchange between larger iron particles, colloidal iron, and soluble iron10

(defined as passing either a 0.02 µm or a 1 kDa filter) also directs interest towards the
particulate and soluble phase. The FeCycle study, a mesoscale SF6 tracer release
experiment without iron perturbation in HNLC waters southeast of New Zealand (Boyd
et al., 2005), showed that iron recycling rates due to biological iron uptake and regen-
eration exceeded input of new iron by 10-fold. Further, particulate Fe would undergo15

a transformation from lithogenic to biogenic iron during settling through the mixed layer.
Rapid biological processing (bacterivory and herbivory, subsequent biological uptake)
after dissolution of dust deposited iron hydroxides and presumably also photolysis of
siderophore complexed Fe(III)-hydroxide (Borer et al., 2005) resulted in exchange from
the lithogenic particulate phase via the soluble phase to the biogenic particulate phase20

(Frew et al., 2006; Strzepek et al., 2005; Maldonado et al., 2005). The rapid exchange
with particulate iron phases provides new insight into iron cycling and export dynamics
since the role of particulate iron in iron biogeochemistry appears more important than
previously assumed. During the Gothenburg workshop however, the main center of
attention was on colloidal iron and we therefore focus thereon hereafter.25

Moran et al. (1996) measured iron, among other bioactive trace metals, in colloidal
matter obtained by cross-flow filtration of seawater. The major proportion of the dis-
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solved Fe in open ocean seawater (here defined as 0.4 µm filtered) was found to be
in the colloidal form (here defined as >0.02–0.4 µm) (Wu et al., 2001), with continuing
debate about the bioavailability of this fraction. Chen and Wang (2001) showed that
freshly precipitated colloids were available to phytoplankton but aging processes (15
days) reduced markedly their availability. Wang and Dei (2003) demonstrated that Fe5

availability from colloidal matter to cyanobacteria (Synechococcus, Trichodesmium) is
largely dependent on the size and origin of the material, with the tendency of Fe bound
to smaller colloids and biogenic colloidal material derived from the same species being
more available. The transfer from the soluble to the colloidal fraction appears rapid for
iron in comparison to for example Zn, resulting in dynamic cycling including particle10

formation, and the drawdown of colloidal Fe indicated uptake by phytoplankton (Hurst
and Bruland, 2007). Further, colloidal Fe is photoreactive and thus also contributes to
the bioavailable pool of Fe(II) in surface waters (Barbeau, 2006; Fan, 2008).

Dissolved organic matter (DOM, which contains the colloidal fraction) in seawater
has previously been considered to be old (∼6 KY) and refractory (Bauer et al., 1992).15

This refractory pool is also known to be rich in aromatic chromophoric material there-
fore often called chromophoric DOM (CDOM). However, in the last ten years the picture
has changed somewhat and now it is believed that in addition to the refractory pool sea-
water DOM also consists of in situ biologically derived material, rich in proteic matter
and sacharides and saccharide derivatives as building blocks (Aluwihare et al., 1997).20

In addition significant findings have been made to understand that fractions of marine
DOM possess a gel forming character, including spontaneous assembling into micro-
gels after filtration, where calcium bridging is shown to be important (Chin et al., 1998).
In addition, new microscopy based techniques have shown that fibrillar type materials,
hypothesized to consist of acid polysaccharides, are abundant in many open ocean25

regimes (Santschi et al., 1998). This marine gel phase can be an important transfer
route from truly dissolved to particulate pool of matter (Verdugo et al., 2004). These
findings in the dissolved fraction seem to link well to the marine snow formation of
transparent exopolymeric particles (TEP), which are important for carbon export (En-
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gel et al., 2004), although direct experimental evidence linking the fibrillar material to
TEP and sedimentation has been lacking.

To what extent these processes and phase transfers in organic matter are controlling
the physicochemical states and vertical distributions of iron and other trace elements
has previously only been hypothesized. Stolpe and Hassellöv (2009) coupled Flow5

Field Flow Fractionation (FlFFF) with ICPMS, on-line “humic” fluorescence and UV-
absorbance detectors, and subsamples for Atomic Force Microscopy (AFM) to frac-
tionate and identify different colloidal size classes and associated trace metals during
phytoplankton bloom events in a Fjord on the North Sea coast of Sweden. They found
both seasonal and vertical variations in the colloidal size distributions for iron and other10

trace elements and could use these in order to explain the apparent iron solubility and
vertical distribution to a large extent (Stolpe and Hassellöv, 2009). During the winter
season colloidal size distribution for iron (and many other elements) were only ap-
pearing in the CDOM fraction (∼0.5–3 nm), while during the spring bloom and summer
bloom in two consecutive seasons the colloidal size distributions for iron were shift-15

ing dramatically. In addition to the CDOM phase, iron partitioned into two larger size
classes. With AFM these two colloidal populations were identified to be semispheri-
cal (3–7 nm) and fibrillar (∼0.5 nm thick and 30–200 nm long). From the partitioning
of other elements and their size and shape it was hypothesized that the semispheri-
cal colloids were mainly thiol rich proteic biopolymers, while the fibrillar materials were20

polysaccharide rich exudates that could be the precursors of the microgels proposed
by Chin et al. (1998). The conclusion that the seasonal variations of iron association
with different colloidal phases to some extent control the apparent iron solubility in estu-
arine water is in line with the findings from Bergquist et al. (2007), implying that colloids
in the open ocean control iron solubility. Likewise, Boehme and Wells (2006) and Floge25

and Wells (2007), using FlFFF coupled to excitation emission matrix spectroscopy and
a UV-absorbance detector, observed a shift in colloidal size class distribution between
protein-like and humic-like fluorescence of CDOM during phytoplankton blooms in an
estuary.
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Progress has been made in studying the behavior of iron oxide nanoparticles in dif-
ferent freshwater and salt matrixes and drawing conclusions for the inorganic phase
within the filterable fraction (Hassellöv and von der Kammer, 2008, and references
therein). Partly based on this work, the understanding of flocculation processes has
improved and previous concepts (Sholkovitz, 1978; Sholkovitz et al., 1978) have been5

confirmed. Mylon et al. (2004) using natural organic matter (NOM) coated synthe-
sized hematite colloids, show that the rate of colloid aggregation reaches a maximum
at a salinity of 12, resulting in a removal of 80–90% of dissolved iron in a process oc-
curring on a time scale of seconds (Nowostawska et al., 2008). The colloidal particles
are stabilized by NOM due to electrostatic and repulsive forces (Mosley et al., 2003;10

Sander et al., 2004). Theoretically in seawater the conditions would favor attachment,
but low particle concentrations result in a low collision frequency. Further, colloidal
matter undergoes a transformation in size distribution and elemental composition upon
introduction from fresh water into a seawater system (Stolpe and Hassellöv, 2007). The
efficiency of transport through salinity gradients needs more investigation and isotope15

studies may be of significant importance to form a proper understanding of fluvial iron
inputs into the sea (see Sect. 3).

As aforementioned, recent methodological advancements include the application of
field flow fractionation (FFF), in conjunction with size fractionation by membrane and/or
ultrafiltration techniques, to studies of the metal-colloidal phase (Boehme and Wells,20

2006; Stolpe et al., 2005). FFF was generally applied to samples from coastal sys-
tems and detection limits necessitate the use of pre concentration steps. While being
a powerful tool to characterize size fractionated material, FFF can also help in devel-
oping robust filtering methods particularly at the lower end of the size range, as results
reveal artefacts from membrane filtration can result in unintended removal of under-25

sized material (Howell et al., 2006). The relevance of this for open ocean seawater
requires further testing. Further, cross-flow ultra-filters are defined as a molar cut-off,
which may result in retention of undersized components and permeation of oversized
components, as well as separation of size and chemical composition (Assemi et al.,
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2004). An intercalibration of cross-flow filtration techniques was carried out previously
(Buesseler et al., 1996), but a new approach including classical membrane filtration
and utilizing FlFFF coupled to ICPMS may yield valuable information about the robust-
ness of different filter membranes with regard to fractionation of colloidal size classes
and their elemental composition.5

We conclude that future research directions should encompass further in depth char-
acterizations of the different phases (particulate, colloidal, soluble), which may lead
to a redefinition of the term dissolved iron. This will also lead to a better structural
definition of bioavailable iron. We need to learn how iron is fractionated into specific
size classes, what the exchange kinetics between these phases are, and what con-10

trols/catalyzes them. Specifically, the origin and nature of iron binding ligands needs
to be further addressed to elucidate the role and characteristics of different ligand
classes (L1, L2). In that, we may need to overcome measurement artifacts due to pre-
concentration procedures that are necessitated due to the detection limits especially in
open ocean applications.15

5 Linking biological processes to iron chemistry

Most areas of the open ocean have surface trace metal concentrations between pi-
comolar and nanomolar levels, which are about one millionth of the concentration in
phytoplankton cells (Morel and Price, 2003). Iron is required for many important cellu-
lar processes such as photosynthesis, respiration, nitrogen fixation and nitrate reduc-20

tion. A recent laboratory study involving 15 neritic and oceanic phytoplankton species
produced an elemental ratio of C124N16P1Fe0.0075 (Ho et al., 2003), similar to previ-
ous reviews of Fe:C ratios which have found a range of 2.3–370 µmol:mol (Sarthou
et al., 2005; see also Twining et al., 2004). Research has linked the oxygenation of
the oceans and the subsequent drop in iron solubility and thus iron availability to the25

evolution of more iron efficient phytoplankton (Quigg et al., 2003; Saito et al., 2003)
that are able to cope with the low iron open ocean conditions. Phytoplankton species
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have evolved very effective acquisition mechanisms with high trace metal affinities that
involve interactions with organic iron binding ligands. Uncertainties remain on the na-
ture of such ligands, which control Fe chemistry and bioavailability in marine systems
(Hunter and Boyd, 2007).

Culture experiments have established that marine phyto- and bacterioplankton have5

different iron requirements that are linked to their biogeographical sources (Sunda and
Huntsman, 1995; Brand et al., 1983). More recent work has shown that picophyto-
plankton, which dominate the oligotrophic regions of the oceans, are able to grow opti-
mally in culture at extremely low inorganic iron concentrations (10–15 pM inorganic Fe,
(Timmermans et al., 2005). Our ability to relate these studies to the real environment10

is however limited by our understanding of the chemical speciation of iron in the ocean
(Gledhill and van den Berg, 1994; Rue and Bruland, 1995). These studies indicated
that dissolved iron is strongly complexed in the ocean, results which have been con-
firmed on many occasions since (as discussed in Hunter and Boyd, 2007). The com-
position of this organic fraction is still not well understood, although it appears likely15

that it will consist of autochthonous complexing ligands produced by marine phyto-
and bacterioplankton (Mawji et al., 2008; Boye et al., 2005; Kondo et al., 2008; Vong
et al., 2007) and complex organics such as humic/fulvic acids (Laglera and van den
Berg, 2009). Calculations of the inorganic iron concentration based on measurements
carried out by competitive equilibration cathodic stripping voltammetry show that inor-20

ganic iron concentrations in the ocean are of the order of 10−14–10−11 M (Morel et al.,
2008), although these calculations neglect the contribution of Fe(II), which may also be
present at concentrations of the order of 10−11 M in surface waters (e.g. Hansard et al.,
2009 ; Roy et al., 2008; Croot et al., 2001). It is not clear how much of the organically
complexed iron is available to marine phyto- and bacterioplankton, and parameters25

controlling Fe bioavailability to primary producers are still poorly understood.
Fe bioavailability is influenced by its chemical forms (speciation, redox state), bio-

logical cycling, and the different uptake strategies of the phyto- and bacterio-plankton
communities (Barbeau et al., 1996; Hutchins et al., 1999a; Strzepek et al., 2005).
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Competition for available Fe is strongest when Fe is in short supply (e.g. Worms et al.,
2006). Recent advances in our understanding and abilities to model iron uptake by
marine phytoplankton (Morel et al., 2008; Shaked et al., 2005; Salmon et al., 2006)
indicate that even at these low inorganic iron concentrations, open ocean phytoplank-
ton will have sufficient iron to grow. Initially iron uptake was thought to be proportional5

to the concentration of inorganic Fe species (Fe′) (Hudson and Morel, 1990). How-
ever, this model proved to be too simplistic to explain phytoplankton growth in natural
systems where concentrations of inorganic iron species were extremely low due to or-
ganic complexation. Thus either the iron-ligand complex (FeL) is directly taken up, or
the inorganic Fe availability is increased, e.g. by reduction to Fe(II). More recently two10

models have been published to describe the kinetics of Fe uptake. The Fe(II) model
by Shaked et al. (2005) and the FeL model by Salmon et al. (2006). There are sig-
nificant distinctions between these models which lead to differences in the predictions
of phytoplankton iron limitation in culture experiments. While the Fe(II) model consid-
ers the surface Fe(II) concentration and explicitly includes unchelated Fe(III) (Fe(III)′)15

as a source of Fe(II) for phytoplankton uptake, the FeL model considers the bulk con-
centration of Fe(II) in the media as the controlling parameter and excludes unchelated
Fe(III) as an irrelevant source (Morel et al., 2008). Morel et al. (2008) point out that the
observed decrease in Fe uptake rates with increasing EDTA concentrations can only
be explained by the Fe(II) model, which results in the conclusion that unchelated Fe(III)20

is indeed an important source of Fe(II) for phytoplankton uptake. However, phytoplank-
ton species behave differently under Fe limitation and it is likely that future experiments
under more natural conditions without the presence of EDTA will result in more realistic
iterations of the iron uptake models. The role of other trace metals and organic material
in the partly species specific adaptations of the iron acquisition system are not com-25

pletely understood. As one example, Peers and Price (2006) have shown that copper
is essential for electron transport in T. Oceanica regardless of Fe status implying that
selection pressure imposed by Fe limitation has resulted in the use of a Cu protein for
photosynthesis in an oceanic diatom.
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Adaptations to low iron environments have been found to include a reduction in cell
size (Sarthou et al., 2005), changes in photosynthetic architecture (Strzepek and Har-
rison, 2004; Peers and Price, 2006) and substitution of iron containing proteins for
non-iron containing proteins (Peers and Price, 2006; McKay et al., 1999). Further
possible adaptations include the induction of high affinity uptake mechanisms such as5

the production of siderophores by marine prokaryotes (Vraspir and Butler, 2009) and
uptake mechanisms that target specific iron containing compounds such as hemes
(Hopkinson et al., 2008) or the production of iron storage proteins (Marchetti et al.,
2009).

Microorganisms can exert a feedback effect on Fe chemistry, for example by re-10

leasing organic matter which is able to react with Fe (e.g. siderophores, exopolymeric
substances (EPS), cell lysis material or fecal pellets), which can enhance iron bioavail-
ability (e.g. Hutchins et al., 1999b). Heldal et al. (1996), for example, visualized and
quantified metals bound to bacterial extracellular matrixes in applying X-ray transmis-
sion electron microscopy. The role of grazing as a source of organic, iron binding15

material via sloppy feeding and/or as a direct source of iron is often discussed. Several
studies address this topic and a general consensus about the importance of grazing
for iron recycling in surface seawater exists (Sato et al., 2007; Barbeau et al., 1996;
Dalbec and Twining, 2009; Sarthou et al., 2008; Hutchins and Bruland, 1994; Hutchins
et al., 1995; Tovar-Sanchez et al., 2007; Zhang and Wang, 2004; Hoffmann et al.,20

2009). However, some results are inconsistent and the detailed mechanisms as well
as the contribution of different grazer types such as protozoa, copepods, krill, and salps
and their specific feeding mechanisms are poorly understood. Therefore, it is difficult
today to estimate the overall function of grazing on the biogeochemical cycles of iron
especially in HNLC regions.25

Most marine microorganisms (bacterio- and phyto-plankton) produce polysaccha-
rides that are either stored as energy reserves or secreted as exopolymeric substances
(EPS) (Schoemann et al., 2001; Decho, 1990; Hoagland et al., 1993). It has recently
been shown that iron starvation is coupled to transparent expolymer particles (TEP)
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production in Trichodesmium (Berman-Frank et al., 2007). Recent studies also pro-
vide evidence that high concentrations of saccharides or carbon-rich organic matrices
can enhance the growth of phytoplankton (Vasconcelos et al., 2002) and efficiently re-
tain Fe (II) (Öztürk et al., 2004; Toner et al., 2009), a highly bioavailable form (Morel
et al., 2008). Steigenberger et al. (2009) show that polysaccharides and cell exudates5

of Phaeodactylum sp can also result in high hydrogen peroxide production, while the
authors still observe a net stabilizing effect of Fe(II) potentially due to a combination of
organic Fe(II) retention paralleled by superoxide production.

Hassler and Schoemann (2009) explore a Fe-related biogeochemical role for
polysaccharides, by examining the influence of various organic ligands (siderophore,10

porphyrin, mono- and poly-saccharides) on iron solubility and its bioavailability to four
keystone phytoplankton species of the Southern Ocean, representing different phyto-
plankton functional groups and size classes (Phaeocystis sp., Chaetoceros sp., Frag-
ilariopsis kerguelensis and Thalassiosira antarctica Comber ). Results show that sac-
charides can increase Fe uptake rates and Fe solubility above the level observed for15

inorganic Fe. Similar observations were made on natural plankton community from the
Southern Ocean (Hassler et al., 2007). Given the ubiquitous presence of saccharides
in the ocean, these compounds might represent an important factor to control the basal
level of soluble and bioavailable Fe.

Over the past years, the Fe(II) pool has been recognized as an important source20

of bioavailable Fe and intermediate in Fe cycling. Albeit short-lived due to rapid
re-oxidation to Fe(III), significant concentrations of Fe(II) were detected in different
oceanic and coastal provinces (Croot and Laan, 2002; Croot et al., 2008, 2005; Roy
et al., 2008; Hopkinson and Barbeau, 2007; Ussher et al., 2007; Breitbarth et al.,
2009). There has been emerging evidence that Fe(II) is retained in oxygenated wa-25

ter by organic ligands (Croot et al., 2001), which may be a product of marine biota
(Roy et al., 2008) or also of other origin and rain introduced (Willey et al., 2008). See
Barbeau (2006) for a comprehensive review and also Sect. 6. The role of Fe(II) for phy-
toplankton nutrition and Fe(II) organic complexation provides interesting and relevant
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research topics for the near future.
Iron limitation also induces a decoupling in the use of macronutrients by phytoplank-

ton, likely to influence the cycling of the major biogeochemical cycles (C, N, P, Si, S)
over geological time scales (de Baar and La Roche, 2002). Further, light intensity can
play an important role (Hoffmann et al., 2008; Maldonado et al., 1999; de Baar et al.,5

2005; Moore et al., 2007a, 2007b). Moreover, Bucciarelli et al. (2009) examined the ef-
fect of Fe-light co-limitation on cellular silica, carbon and nitrogen in two marine diatom
species, Thalassiosira oceanica and Ditylum brightwellii, observing a 1.4-fold increase
in C:N ratio with a decrease in growth rate by 70% in both species and a decrease in
biogenic silica per cell under severe Fe or Fe-light limitation. These results however are10

seemingly in contradiction with many previous lab and field studies showing increased
diatom silicification under Fe limitation (Hutchins and Bruland, 1998; Takeda, 1998;
Firme et al., 2003; Franck et al., 2003).

A significant contribution to the increasing knowledge on the interaction of biological
processes with iron chemistry is made by the improvement of methods in this field.15

Inter-calibrations of Fe detection methods were carried out and measurements of Fe
are now possible in near real time in the field at picomolar level (Bowie et al., 2002,
2005, 2006; Johnson et al., 2007), including Fe(II) (Croot and Laan, 2002). More
sophisticated shipboard incubation systems are available (Hare et al., 2005, 2007a;
Hutchins et al., 2003; Pickell et al., 2009), allowing for more realistic experimental20

designs to assess Fe phytoplankton interactions. Methods were developed to detect
cell surface Fe reduction and uptake (Shaked et al., 2004) and to measure cellular
Fe (Hassler et al., 2004). New highly sensitive electrochemical methods have pushed
our understanding of organic iron complexation in new directions (Croot and Johans-
son, 2000; Laglera and van den Berg, 2009). Utilization of laboratory based extensive25

instrumentation such as FlFFF, x-ray spectroscopy with TEM microscopy, as well as
bioreporters, molecular techniques and genomic information allow for in depth studies
and visualization of Fe limitation and Fe organic matter interactions (e.g. Hassler et al.,
2006; Heldal et al., 1996; Toner et al., 2009; Stolpe et al., 2005; Boyanapalli et al.,
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2007).
Nevertheless, some methods still depend on high material/biomass concentrations

and future development and work may lead towards more direct measurement tech-
niques overcoming pre-concentration artifacts. The majority of phytoplankton iron in-
teraction studies have been carried out in-vitro and with a limited range of species, and5

mostly did not include co-effects of other trace metals. Strong iron chelators such as
EDTA and DFOB are commonly used to induce iron limitation in culture experiments
and experiments are in part difficult to compare due to the variety and combination
of factors (e.g. light intensity, temperature) applied. Thus, it is not clear how predom-
inant the known low iron regime adaptations are in the oceanic environment. Albeit10

very challenging, future experiments should aim towards using more realistic media
chemistries and natural biomass densities of cultures that were recently isolated. Fur-
ther, our increasing ability to detect and characterize iron in seawater and in organisms
(Mawji et al., 2008; Gledhill, 2007; Laglera and van den Berg, 2009; Vong et al., 2007)
coupled to developments in techniques such as shotgun genomics (Rusch et al., 2007;15

Venter et al., 2004; Yooseph et al., 2007) and the potential of proteomics (Nunn and
Timperman, 2007; Dupont et al., 2006) should lead to great advances over the coming
years in our understanding of how organisms have adapted to low iron environments,
and the implications of these adaptations to overall marine productivity and biodiversity.

6 Iron and climate change20

Global climate change will greatly influence atmospheric and hydrographic processes
in the future. Most prominent features include changes in thermohaline circulation of
the North Atlantic, warming of the polar regions, changing wind patterns resulting in
reduced upwelling and wind driven mixing, as well as increased sea-surface tempera-
tures and stratification (Boyd and Doney, 2003). Projected changes in relative humidity25

and land vegetation cover, affecting soil moisture and local dust availability, together
with changed patterns in wind and precipitation, as well as riverine transport, will ulti-
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mately modify the iron supply to the open ocean (Boyd and Doney, 2003; Jickells et al.,
2005). Further, rising atmospheric CO2 acidifies the oceans, leading to changes in
saturation state with respect to calcium carbonate and shifts the aragonite and calcite
saturation depths (Feely et al., 2004) and potentially trace metal solubility. The above-
mentioned processes, albeit uncertainty over their magnitude and exact interrelations5

in the future exists, will affect marine biota, causing regime shifts, and modifications
of biogeochemical cycling (Boyd and Doney, 2003). While climate change needs to
be understood holistically, there is a need to evaluate regional and small scale phys-
ical, chemical, and biological processes in order to derive potential biogeochemical
feedback mechanisms.10

We here focus on direct local effects acting upon iron chemistry in seawater and pri-
marily discuss the emerging field of trace metal biogeochemistry research encompass-
ing two main areas, temperature shifts and changing seawater pH. Both temperature
and pH are master variables for chemical and biological processes and effects on trace
metal biogeochemistry may be multifaceted and complex. Ten years ago, this research15

field did not exist and data are scarce. Assessing the potential effects of sea-surface
warming and ocean acidification on iron biogeochemistry is crucial and predictions to
date are based on our understanding of the current ocean system. Despite the ex-
panding knowledge and increasing awareness for trace metal chemistry in open ocean
research during the past 20 years and the recently defined field and intensifying work20

on ocean acidification research, there is yet little communication between these fields.
A decrease of the surface seawater pH from pre-industrial 8.25 to 7.85 within this

century, and further by up to 0.7 units until 2300 is predicted (Caldeira and Wickett,
2003; Jacobson, 2005). In general, the H+ ion concentration can directly affect metal
uptake by phytoplankton via altered membrane transport activity or via direct compe-25

tition of the H+ ion with metal ions for membrane transporters or other metabolically
active sites on the cell surface (Sunda and Huntsman, 1983; Vigenault and Campbell,
2005). Further main aspects are the inorganic solubility of iron, changes in organic
complexation, phytoplankton – trace metal feedback mechanisms, and differences in
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redox chemistry.
Fe(OH)3 solubility and Fe(III) inorganic speciation are expected to changed with

ocean acidification (Liu and Millero, 2002, 1999). When seawater pH falls below 8,
changes in the inorganic speciation result in an increase of the thermodynamic Fe(III)
hydroxide solubility. Enhanced solubility above pH 7 in seawater of the warm or tem-5

perate ocean though is mainly due to organic ligands and suggests any change in
solubility arising from acidification will be mainly related to the organic complexes (Liu
and Millero, 2002). However, in cold water the solubility of Fe can exceed FeL concen-
trations (P. Croot, personal communication, calculated based on Liu and Millero, 2002),
bringing inorganic speciation shifts due to pH and temperature back into the game. In-10

teresting questions arise concerning whether ocean acidification could potentially also
affect metal leaching from atmospheric deposits (see Sect. 1.1 and 1.2) and how the
metastable colloidal Fe phase may be affected (see Sect. 4).

The potential effect of pH acting directly on FeL complexes depends on the nature of
Fe-binding functional groups. The H+ stoichiometry of the Fe(III) binding sites defines15

the magnitude of acid dissociation constants (pKa). Carboxyl groups have a pKa ∼5
and thus the conditional stability constant of the FeL complex (log KFeL) should remain
unchanged above pH 6. In contrast, phenolic groups have a pKa ∼ 9 and log KFeL will
increase with pH (Sillen and Martell, 1971). Both groups can be found in siderophores.
While to date no published experimental data on the pH effect for FeL can be found,20

Averyt et al. (2004) show a decrease of logKCuL with lower pH in two lakes. Similar
effects were observed for Cd ligands, but less so for Zn ligands (Sander et al., 2007).
Further, iron chelates are more photolabile at lower pH (Sunda and Huntsman, 2003),
which directly involves effects on Fe photochemistry (see below). Overall though, while
FeL complexes may or may not be directly pH affected, alterations of organic iron com-25

plexation may still arise from biological ligand production processes, should those be
affected by pH and/or temperature (see below). Several models of Fe uptake mecha-
nisms for phytoplankton exist (Morel et al., 2008; Shaked et al., 2005; Salmon et al.,
2006, see also Sect. 5) and their pH dependence may be largely connected on their re-
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liance on Fe(II) as the actual species taken up and on the species capability to regulate
pH at the cell surface.

It can be expected that pH driven changes in trace metal availability will trigger bi-
ological feedback mechanisms, which regulate trace metal availability to marine phy-
toplankton. These can be in form of exudates, cell lysates, or chlorophyll degradation5

products, and can serve as trace metal ligands to prevent toxic effects or to increase
trace metal uptake rates. The capability of eukaryotic phytoplankton species to produce
trace metal binding ligands either to prevent toxic effects or to increase uptake has been
addressed (Ahner et al., 1997; Barbeau et al., 2001; Hutchins et al., 1999b). However,
information on biological feedback mechanisms in response to climate change that af-10

fect trace metal chemistry is very limited. It should be noted that in contrast to the open
ocean, estuaries and coastal areas might show a wide range in pH (5 to >9) (e.g. Chen
and Durbin, 1994; Sunda and Huntsman, 1998) and obviously in temperature, to which
phytoplankton species are adapted to. However, even considering that phytoplankton
blooms may cause temporal increases in surface water pH due to CO2 uptake, open15

ocean species are adapted to a very narrow range in pH. Further, some coastal areas
such as the Oregon shelf temporarily experience subsurface input of low pH water and
such systems could be valuable analogs for acidification and temperature effects in
natural settings.

Several studies were carried out during the past years assessing changes in phy-20

toplankton physiology using laboratory batch cultures and mesocosm pCO2 perturba-
tions. Changes in carbon and nitrogen fixation rates, calcification rates, and carbon
export are reflective of pH effects on the biogeochemistry of the manipulated system
(Riebesell et al., 2007; Orr et al., 2005, see also Biogeosciences Special Issue 43),
which unequivocally will also affect trace metal cycling. Further studies also reported25

combined effects of pCO2 and temperature change (Hare et al., 2007b), and model-
ing studies also suggest potential interactions with irradiance effects due to changing
stratification in the future ocean on phytoplankton physiology and species composition
(Boyd and Doney, 2002). Seen in coherence with biological effects on organic Fe com-
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plexation, and in return again with Fe availability effects on phytoplankton, these studies
indicate that phytoplankton physiology and species composition could exert biological
feedback mechanisms on trace metal cycling as a function of pCO2 and temperature
in seawater.

Data from a coastal mesocosm CO2 enrichment experiment (Breitbarth et al., 2009)5

suggest increasing dissolved iron concentrations with ocean acidification. The authors
invoke a biological feedback mechanism at future seawater pCO2 resulting in increased
organic Fe(III) complexation, which requires further testing. More so, changes in Fe(II)
chemistry were observed. In part, the underlying processes can theoretically be de-
rived based on established relationships of Fe(II) oxidation rates and inorganic Fe(II)10

speciation in presence of different oxidizers over environmentally relevant ranges in pH,
temperature, and salinity (Santana-Casiano et al., 2006; Gonzalez-Davila et al., 2006;
Santana-Casiano et al., 2005; Millero and Sotolongo, 1989; Millero et al., 1987; Croot
and Laan, 2002). For example, over a seawater pH decrease of 0.5 units, a 10-fold
increase in the half-life of Fe(II) can be expected and the effects of ocean acidification15

may thus override the influences from sea-surface temperature changes (Santana-
Casiano et al., 2005). Fe(II) oxidation kinetics are seemingly affected by organic com-
plexation (e.g. Croot et al., 2001; Rose, 2003; Roy et al., 2008, see also Sect. 5). Fe(II)
ligands may be biologically mediated and potential biological feedback mechanisms in
the future could thus further complicate the picture, requiring focused research in this20

field. Moreover, changing light regimes are expected to affect photochemical cycling of
Fe in sunlit surface waters (Boyd and Doney, 2002). Both, light intensity and the light
spectrum penetrating the water will influence photochemical processes and this field
requires further attention.

Similar to seawater pH, temperature effects have been rarely studied in coherence25

with trace metal biogeochemical measurements in open ocean systems. It has been
standard to date to carry out measurements of organic iron complexation at room
temperature, but temperature has profound effects on metal speciation and solubil-
ity. Further, Rose et al. (2009) demonstrate synergistic effects of temperature and iron
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additions on phytoplankton physiology and community dynamics in Ross Sea waters.
Likewise, Fu et al. (2008) demonstrate that pCO2 perturbations alone may not give
the sole answer to potential physiological changes in phytoplankton, since these can
be modified by interactions with Fe limitation. CO2 and N2 fixation rates in the future
ocean may be controlled by a combination of Fe availability and pCO2, further stressing5

the need to elucidate future changes in seawater iron chemistry.
Overall, climate change effects on iron speciation and biological limitation are likely

not going to be driven by a single factor, and Rose et al. (2009) stress the importance
of multivariate studies in order to understand ecosystem changes. It also remains
to be shown how climate change may alter the interrelations of iron with other trace10

metals and macronutrients. For example, laboratory experiments showed that cad-
mium toxicity can be reduced under high iron availability, suggesting that cadmium is
a competitive inhibitor of the iron uptake system or iron dependent cellular processes
(Foster and Morel, 1982; Sunda and Huntsman, 2000). Similar observation are made
for iron limited natural phytoplankton assemblages from the Southern Ocean by Cullen15

et al. (2003) who suggest that Fe limited phytoplankton take up more Cd resulting in
lower Cd:PO4 ratios in surface waters. Iron co-limitations and interactions with other
nutrients and trace metals have been observed (e.g. Schulz et al., 2004; Mills et al.,
2004; Wu et al., 2003; Wells et al., 2005) and apparently the composition of trace met-
als and macro nutrients greatly affect natural Fe fertilization efficiency (see Sect. 1.2).20

Moreover, Statham et al. (2008) recently addressed glacier melt-water input of iron and
colloidal matter from the Greenland Ice Sheet. In the context of the expected changes
for Fe biogeochemistry discussed here, their study illustrates how atmospheric warm-
ing can act on various levels, evidentially affecting iron biogeochemistry in the sea.

We conclude that ocean acidification may result in increased Fe(III) solubility, is likely25

to decrease stability of some FeL complexes, and is likely to increase Fe(II) stability.
It may also change the mechanisms of Fe acquisition by cells, which though depends
on the Fe status of the regime and the type of phytoplankton species present. Tem-
perature effects may be smaller in comparison, with most pronounced changes though
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to be expected in polar waters. Recommendations for future research directions are
systematic measurements of Fe(III) solubility in pH range 7–9 and effects of Fe-binding
ligands along with the study of temperature effects thereon, and field experiments in
upwelling regions with a focus on low pH regimes. Moreover, the role of organic lig-
ands in enhancing Fe(II) stability needs to be investigated as well as effects of pH5

and temperature on the photoreactivity of Fe(III)L complexes. It is largely unknown
what the pH controls in organisms are, and how they affect Fe acquisition. More
emphasis is needed on measurements and control of the seawater carbonate sys-
tem, including pH, in field studies and laboratory cultures. Protocols carried out to
achieve pH control need to be reported and researchers are urged to report pH data10

on the total or seawater pH scale to ensure comparability of different studies. The
comprehensive “Guide for Best Practices in Ocean Acidification Research and Data
Reporting” was recently published and should be adapted for trace metal research
(http://www.epoca-project.eu/index.php/Home/Guide-to-OA-Research/).
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